Conus venoms: a rich source of novel ion channel-targeted peptides.

نویسندگان

  • Heinrich Terlau
  • Baldomero M Olivera
چکیده

The cone snails (genus Conus) are venomous marine molluscs that use small, structured peptide toxins (conotoxins) for prey capture, defense, and competitor deterrence. Each of the 500 Conus can express approximately 100 different conotoxins, with little overlap between species. An overwhelming majority of these peptides are probably targeted selectively to a specific ion channel. Because conotoxins discriminate between closely related subtypes of ion channels, they are widely used as pharmacological agents in ion channel research, and several have direct diagnostic and therapeutic potential. Large conotoxin families can comprise hundreds or thousands of different peptides; most families have a corresponding ion channel family target (i.e., omega-conotoxins and Ca channels, alpha-conotoxins and nicotinic receptors). Different conotoxin families may have different ligand binding sites on the same ion channel target (i.e., mu-conotoxins and delta-conotoxins to sites 1 and 6 of Na channels, respectively). The individual peptides in a conotoxin family are typically each selectively targeted to a diverse set of different molecular isoforms within the same ion channel family. This review focuses on the targeting specificity of conotoxins and their differential binding to different states of an ion channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conus Venom Peptides, Receptor and Ion Channel Targets, and Drug Design: 50 Million Years of Neuropharmacology

The predatory cone snails (Conus) are among the most successful living marine animals (;500 living species). Each Conus species is a specialist in neuropharmacology, and uses venom to capture prey, to escape from and defend against predators and possibly to deter competitors. An individual cone snail’s venom contains a diverse mixture of pharmacological agents, mostly small, structurally constr...

متن کامل

E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology.

The predatory cone snails (Conus) are among the most successful living marine animals (;500 living species). Each Conus species is a specialist in neuropharmacology, and uses venom to capture prey, to escape from and defend against predators and possibly to deter competitors. An individual cone snail’s venom contains a diverse mixture of pharmacological agents, mostly small, structurally constr...

متن کامل

Conus peptides--a rich pharmaceutical treasure.

Marine predatory cone snails (genus Conus) with over 500 species represent what is arguably the largest single genus of marine animals alive today. All Conus are venomous and utilize a complex mixture of Conus peptides to capture their preys and for other biological purposes. Each component of Conus peptides selectively targets a specific subtype of ion channels, neurotransmitter receptors or t...

متن کامل

D-amino acid-containing peptides in Conus venoms

-amino acids have been documented in relatively few gene products, including peptides found in Conus venoms. The present work provides an overview of various D-amino acid-containing Conus peptides (conopeptides or conotoxins), such as the contryphans, conomarphins, conophans, conomap and certain I1-superfamily conotoxins. Characterization of their sequences and structures, as well as the known ...

متن کامل

α-RgIB: A Novel Antagonist Peptide of Neuronal Acetylcholine Receptor Isolated from Conus regius Venom

Conus venoms are rich sources of biologically active peptides that act specifically on ionic channels and metabotropic receptors present at the neuromuscular junction, efficiently paralyzing the prey. Each species of Conus may have 50 to 200 uncharacterized bioactive peptides with pharmacological interest. Conus regius is a vermivorous species that inhabits Northeastern Brazilian tropical water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological reviews

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2004